« Processus de décision markovien » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 1 : Ligne 1 :
==Domaine==
 
[[Category:Intelligence artificielle]]Intelligence artificielle<br>
[[Category:Intelligence artificielle]]
[[Catégorie:Représentation des connaissances]]Représentation des connaissances<br>
[[Catégorie:Représentation des connaissances]]
[[Catégorie:Connaissance incertaine ou stochastique]]Connaissance incertaine ou stochastique<br>
[[Catégorie:Connaissance incertaine ou stochastique]]
[[Catégorie:Théorie de la décision]]Théorie de la décision<br>
[[Catégorie:Théorie de la décision]]
[[Category:Coulombe2]]
[[Category:Coulombe2]]
[[Catégorie:Scotty2]]
[[Catégorie:Scotty2]]
Ligne 14 : Ligne 14 :
   
   
==Français==
==Français==
'''processus de décision markovien  '''n.m.
'''processus de décision markovien  '''n.m.


Ligne 20 : Ligne 19 :
   
   
==Anglais==
==Anglais==
'''Markov decision process '''
'''Markov decision process '''




 
<small>





Version du 19 juin 2019 à 21:23


Définition

En intelligence artificielle, un processus de décision markovien - PDM (en anglais Markov decision process - MDP) est un modèle aléatoire où un agent prend des décisions et où les résultats de ses actions sont aléatoires. Les PDM sont une extension des chaînes de Markov avec plusieurs actions à choisir par état et où des récompenses sont gagnées par l'agent.

Les PDM sont utilisés pour étudier des problèmes d'optimisation à l'aide d'algorithmes de programmation dynamique ou d'apprentissage par renforcement dans de nombreuses disciplines, notamment la robotique, l'automatisation, l'économie et l'industrie manufacturière.

Français

processus de décision markovien n.m.

processus de décision de Markov n.m.

Anglais

Markov decision process



Source:wikipedia


Source : TERMIUM Plus