« Problème SAT » : différence entre les versions
m (Remplacement de texte — « == Domaine == » par « == en construction == <small>Entrez ici les domaines et catégories...</small> ») |
m (Remplacement de texte — « <small>Entrez ici les domaines et catégories...</small> » par « ») |
||
Ligne 1 : | Ligne 1 : | ||
== en construction == | == en construction == | ||
[[Category:Vocabulary]] Vocabulary<br /> | [[Category:Vocabulary]] Vocabulary<br /> | ||
[[Category:Vocabulary]] | [[Category:Vocabulary]] |
Version du 3 juillet 2019 à 10:20
en construction
Vocabulary
Définition
Français
satisfaisabilité booléenne
Anglais
Boolean satisfiability problem
In computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated as SATISFIABILITY or SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable. On the other hand, if no such assignment exists, the function expressed by the formula is FALSE for all possible variable assignments and the formula is unsatisfiable. For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable.
Contributeurs: Isaline Hodecent, wiki