« Classification ascendante hiérarchique » : différence entre les versions


m (Remplacement de texte — « Category:Vocabulaire » par « <!-- Vocabulaire --> »)
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 1 : Ligne 1 :
__NOTOC__
 
== en construction ==  
== en construction ==  
 
[[Category:Vocabulaire]]
<!-- Vocabulaire -->Vocabulaire<br />
[[Category:]]
<br />
<br />


== Définition ==
== Définition ==
Ligne 15 : Ligne 11 :
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.


[[Fichier:Hierarchique algorithme.gif]]




<br />
<br />


== Français ==
== Français ==
=== algorithme hiérarchique===
'''algorithme hiérarchique'''
<br />
 
<br />


== Anglais ==
== Anglais ==
=== hierarchical clustering   ===
'''hierarchical clustering'''
 
<br/>
<br/>
<br/>
 
<br/>
<br/>
<br/>
<br/>

Version du 16 août 2019 à 21:46

en construction

Définition

In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:[1]

  • Agglomerative: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
  • Divisive: This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.



Français

algorithme hiérarchique


Anglais

hierarchical clustering