« Estimation de l'erreur de prédiction » : différence entre les versions


(Page créée avec « == en construction == Catégorie:Vocabulary Catégorie:Apprentissage machine Catégorie:UNSW == Définition == XXXXXXXXXXXXXXX == Français == '''XXXXXXXXX... »)
Balise : Éditeur de wikicode 2017
 
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 14 : Ligne 14 :
== Anglais ==
== Anglais ==
'''expected error estimate'''
'''expected error estimate'''
'''Laplace error estimate'''


In pruning a decision tree, one needs to be able to estimate the expected error at any node (branch or leaf). This can be done using the '''Laplace error estimate''', which is given by the formula<center>''E''(''S'') = (''N'' – ''n'' + ''k'' – 1) / (''N'' + ''k'').</center>where
In pruning a decision tree, one needs to be able to estimate the expected error at any node (branch or leaf). This can be done using the '''Laplace error estimate''', which is given by the formula<center>''E''(''S'') = (''N'' – ''n'' + ''k'' – 1) / (''N'' + ''k'').</center>where

Version du 13 septembre 2019 à 10:42

en construction


Définition

XXXXXXXXXXXXXXX

Français

XXXXXXXXXXXXXXX

Anglais

expected error estimate

Laplace error estimate

In pruning a decision tree, one needs to be able to estimate the expected error at any node (branch or leaf). This can be done using the Laplace error estimate, which is given by the formula

E(S) = (Nn + k – 1) / (N + k).

where

S is the set of instances in a node
k is the number of classes (e.g. 2 if instances are just being classified into 2 classes: say positive and negative)
N is the is the number of instances in S
C is the majority class in S
n out of N examples in S belong to C

Source : INWS machine learning dictionary ]