« Régression Lasso » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Lasso Regression''' Lasso regression for neural networks performs r... »)
 
m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org  »)
Ligne 17 : Ligne 17 :


[https://deepai.org/machine-learning-glossary-and-terms/lasso-regression  Source : DeepAI.org ]
[https://deepai.org/machine-learning-glossary-and-terms/lasso-regression  Source : DeepAI.org ]
[[Catégorie:DeepAI.org]]


[[Catégorie:vocabulary]]
[[Catégorie:vocabulary]]

Version du 15 décembre 2020 à 18:08

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Lasso Regression

Lasso regression for neural networks performs regularization during the training phase with the L1 norm, i.e. it adds a term which is the sum of the absolute values of the weights to the objective (loss) function being minimized. Thus, lasso regression minimizes the following during training: Objective = base_loss(weights) + alpha * (sum of absolute value of the weights). The base_loss will depend on the underling task (e.g. cross-entropy loss for classification) and alpha is generally adjusted during model validation, and is called the regularization parameter. Lasso stands for "least absolute shrinkage and selection operator."



Source : DeepAI.org

Contributeurs: Claire Gorjux, wiki