« Mesure F » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' F-Score ''' The F-score, also called the F1-score, is a measure of... ») |
m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org ») |
||
Ligne 23 : | Ligne 23 : | ||
[https://deepai.org/machine-learning-glossary-and-terms/f-score Source : DeepAI.org ] | [https://deepai.org/machine-learning-glossary-and-terms/f-score Source : DeepAI.org ] | ||
[[Catégorie:DeepAI.org]] | |||
[[Catégorie:vocabulary]] | [[Catégorie:vocabulary]] |
Version du 15 décembre 2020 à 18:10
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
F-Score
The F-score, also called the F1-score, is a measure of a model’s accuracy on a dataset. It is used to evaluate binary classification systems, which classify examples into ‘positive’ or ‘negative’.
The F-score is a way of combining the precision and recall of the model, and it is defined as the harmonic mean of the model’s precision and recall.
The F-score is commonly used for evaluating information retrieval systems such as search engines, and also for many kinds of machine learning models, in particular in natural language processing.
It is possible to adjust the F-score to give more importance to precision over recall, or vice-versa. Common adjusted F-scores are the F0.5-score and the F2-score, as well as the standard F1-score.
Contributeurs: Imane Meziani, wiki