« Bootstrap aggregating » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Bootstrap aggregating ''' Bootstrap aggregating, also called baggin... ») |
(Page redirigée vers Ré-échantillonnage avec remise ensembliste) Balise : Nouvelle redirection |
||
Ligne 1 : | Ligne 1 : | ||
#REDIRECTION[[Ré-échantillonnage avec remise ensembliste]] | |||
[[Catégorie:ENGLISH]] | |||
==en construction== | ==en construction== | ||
Ligne 19 : | Ligne 23 : | ||
[https://en.wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms Source : Wikipedia Machine learning algorithms ] | [https://en.wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms Source : Wikipedia Machine learning algorithms ] | ||
Version du 17 janvier 2021 à 10:10
Rediriger vers :
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Bootstrap aggregating
Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach.
[XXXXXXXXXX Source : Source : Wikipedia ]
Contributeurs: wiki