« Partitionnement en k-moyennes » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' k-means clustering''' k-means clustering is a method of vector quan... »)
 
Aucun résumé des modifications
Ligne 5 : Ligne 5 :


== Français ==
== Français ==
''' XXXXXXXXX '''
''' algorithme des centres de groupes'''


== Anglais ==
== Anglais ==
Ligne 14 : Ligne 14 :
<small>
<small>


[http://isi.cbs.nl/glossary/term1780.htm  Source : ISI ]
[https://en.wikipedia.org/wiki/K-means_clustering  Source : Wikipedia  Machine Learning ]
[https://en.wikipedia.org/wiki/K-means_clustering  Source : Wikipedia  Machine Learning ]



Version du 31 janvier 2021 à 15:43

en construction

Définition

XXXXXXXXX

Français

algorithme des centres de groupes

Anglais

k-means clustering

k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians and k-medoids.

Source : ISI Source : Wikipedia Machine Learning

Contributeurs: Isaline Hodecent, wiki