« Partitionnement de données » : différence entre les versions


Ligne 17 : Ligne 17 :
[[Fichier:Clustering1.jpg ‎]]
[[Fichier:Clustering1.jpg ‎]]


Un chercheur pourrait alors examiner les clusters et, par exemple, étiqueter le cluster 1 en tant qu'"arbres nains" et le cluster 2 en tant qu'"arbres de taille normale".
Un chercheur pourrait alors examiner les clusters et, par exemple, étiqueter la grappe 1 en tant qu'«arbres nains"» et la grappe 2 en tant qu'«
arbres de taille normale».


Autre exemple, celui d'un algorithme de clustering basé sur la distance entre un exemple et un point central, illustré comme suit :
Autre exemple, celui d'un algorithme de clustering basé sur la distance entre un exemple et un point central, illustré comme suit :

Version du 3 décembre 2018 à 16:29

Domaine

Vocabulaire
Claude
Apprentissage profond
Scotty
Google


Définition

Groupement d'exemples similaires, en particulier lors d'un apprentissage non supervisé. Une fois tous les exemples groupés, une personne peut éventuellement attribuer un sens à chaque grappe.

Il existe de nombreux algorithmes de clustering. Par exemple, l'algorithme k-moyennes groupe des exemples en fonction de leur proximité avec un centroïde, comme dans le diagramme suivant :

Clustering1.jpg

Un chercheur pourrait alors examiner les clusters et, par exemple, étiqueter la grappe 1 en tant qu'«arbres nains"» et la grappe 2 en tant qu'« arbres de taille normale».

Autre exemple, celui d'un algorithme de clustering basé sur la distance entre un exemple et un point central, illustré comme suit : Clustering 2.jpg



Termes privilégiés

<poll> Choisissez parmi ces termes proposés : partitionnement mise en grappe groupage groupement </poll>



Anglais

clustering