« Théorème central limite » : différence entre les versions


m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org  »)
m (Isaline a déplacé la page Central Limit Theorem vers Théorème central limite)
(Aucune différence)

Version du 12 mars 2021 à 11:59

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Central Limit Theorem

The Central Limit Theorem states that the distribution of various independent observation means approaches a normal distribution model as the sample size gets larger, regardless of the population distribution’s statistical shape.

Moreover, the theory demonstrates that as the sample size increase, even across multiple unrelated datasets, so increases the accuracy of the population mean estimate.

For example, calculating the mean of a sample is only an estimate of the mean of the population distribution. So there will always be some margin of error. However, if you draw multiple independent samples and then graph all of their means, the distribution of those sample means will form a Normal, or Gaussian distribution.

On the same token, if you take the average of every standard deviation observation in your sample, then you’ll find the exact standard deviation for your entire population.



Source : DeepAI.org

Contributeurs: Isaline Hodecent, wiki