« Partitionnement en k-moyennes » : différence entre les versions
Aucun résumé des modifications |
m (Isaline a déplacé la page K-means clustering vers Partitionnement en k-moyennes) |
(Aucune différence)
|
Version du 2 avril 2021 à 10:41
en construction
Définition
XXXXXXXXX
Français
algorithme des centres de groupes
Anglais
k-means clustering
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians and k-medoids.
Contributeurs: Isaline Hodecent, wiki