« Matrice diagonalisable » : différence entre les versions


m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org  »)
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
==en construction==
== Définition ==
== Définition ==
XXXXXXXXX
Matrice carrée semblable à une matrice diagonale.


== Français ==
== Français ==
''' XXXXXXXXX '''
''' matrice diagonalisable '''


== Anglais ==
== Anglais ==
''' Diagonalizable Matrix '''
''' diagonalizable matrix '''


A diagonalizable matrix is any square matrix or linear map where it is possible to sum the eigenspaces to create a corresponding diagonal matrix.  
A diagonalizable matrix is any square matrix or linear map where it is possible to sum the eigenspaces to create a corresponding diagonal matrix.  


An n matrix is diagonalizable if the sum of the eigenspace dimensions is equal to n.


A linear map of T : V → V is diagonalizable if the sum of eigenspace dimensions is equal to dim(V),
<small>


A matrix that is not diagonalizable is considered “defective.”
[https://deepai.org/machine-learning-glossary-and-terms/diagonalizable-matrix Source : DeepAI.org ]
 
The point of this operation is to make it easier to scale data, since you can raise a diagonal matrix to any power simply by raising the diagonal entries to the same. In this case, the diagonal matrix’s determinant is simply the product of all the diagonal entries


[https://www.techno-science.net/glossaire-definition/Matrice-diagonalisable.html  Source : Techno-sciences.net ]


<small>
[https://www.methodemaths.fr/diagonalisation_matrices/  Source : methodemaths.fr ]


[https://deepai.org/machine-learning-glossary-and-terms/diagonalizable-matrix  Source : DeepAI.org ]


[[Catégorie:DeepAI.org]]
[[Catégorie:DeepAI.org]]
[[Catégorie:vocabulary]]
[[Catégorie:vocabulary]]

Version du 29 avril 2021 à 11:07

Définition

Matrice carrée semblable à une matrice diagonale.

Français

matrice diagonalisable

Anglais

diagonalizable matrix

A diagonalizable matrix is any square matrix or linear map where it is possible to sum the eigenspaces to create a corresponding diagonal matrix.


Source : DeepAI.org

Source : Techno-sciences.net

Source : methodemaths.fr

Contributeurs: Claire Gorjux, Imane Meziani, wiki