« Algorithme progressif-rétrogressif » : différence entre les versions


m (ClaireGorjux a déplacé la page Forward–backward algorithm vers Algorithme progressif-rétrogressif)
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
==en construction==
== Définition ==
== Définition ==
XXXXXXXXX
XXXXXXXXX


== Français ==
== Français ==
''' XXXXXXXXX '''
''' algorithme progressif-rétrogressif '''
 
'''algorithme forward-backward'''


== Anglais ==
== Anglais ==
''' Forward–backward algorithm'''
''' forward–backward algorithm'''


The forward–backward algorithm is an inference algorithm for hidden Markov models which computes the posterior marginals of all hidden state variables given a sequence of observations/emissions {\displaystyle o_{1:T}:=o_{1},\dots ,o_{T}}{\displaystyle o_{1:T}:=o_{1},\dots ,o_{T}}, i.e. it computes, for all hidden state variables {\displaystyle X_{t}\in \{X_{1},\dots ,X_{T}\}}{\displaystyle X_{t}\in \{X_{1},\dots ,X_{T}\}}, the distribution {\displaystyle P(X_{t}\ |\ o_{1:T})}{\displaystyle P(X_{t}\ |\ o_{1:T})}. This inference task is usually called smoothing. The algorithm makes use of the principle of dynamic programming to efficiently compute the values that are required to obtain the posterior marginal distributions in two passes. The first pass goes forward in time while the second goes backward in time; hence the name forward–backward algorithm.
The forward–backward algorithm is an inference algorithm for hidden Markov models which computes the posterior marginals of all hidden state variables given a sequence of observations/emissions {\displaystyle o_{1:T}:=o_{1},\dots ,o_{T}}{\displaystyle o_{1:T}:=o_{1},\dots ,o_{T}}, i.e. it computes, for all hidden state variables {\displaystyle X_{t}\in \{X_{1},\dots ,X_{T}\}}{\displaystyle X_{t}\in \{X_{1},\dots ,X_{T}\}}, the distribution {\displaystyle P(X_{t}\ |\ o_{1:T})}{\displaystyle P(X_{t}\ |\ o_{1:T})}. This inference task is usually called smoothing. The algorithm makes use of the principle of dynamic programming to efficiently compute the values that are required to obtain the posterior marginal distributions in two passes. The first pass goes forward in time while the second goes backward in time; hence the name forward–backward algorithm.
Ligne 21 : Ligne 21 :


[https://en.wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms  Source : Wikipedia Machine learning algorithms  ]
[https://en.wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms  Source : Wikipedia Machine learning algorithms  ]
[https://archipel.uqam.ca/7009/1/M13570.pdf  Source : UQAM ]
[https://stanford.edu/~shervine/l/fr/teaching/cs-221/pense-bete-modeles-variables  Source : Stanford ]


[[Catégorie:vocabulary]]
[[Catégorie:vocabulary]]
[[Catégorie:Wikipedia-IA‏‎]]
[[Catégorie:Wikipedia-IA‏‎]]

Version du 10 mai 2021 à 13:38

Définition

XXXXXXXXX

Français

algorithme progressif-rétrogressif

algorithme forward-backward

Anglais

forward–backward algorithm

The forward–backward algorithm is an inference algorithm for hidden Markov models which computes the posterior marginals of all hidden state variables given a sequence of observations/emissions {\displaystyle o_{1:T}:=o_{1},\dots ,o_{T}}{\displaystyle o_{1:T}:=o_{1},\dots ,o_{T}}, i.e. it computes, for all hidden state variables {\displaystyle X_{t}\in \{X_{1},\dots ,X_{T}\}}{\displaystyle X_{t}\in \{X_{1},\dots ,X_{T}\}}, the distribution {\displaystyle P(X_{t}\ |\ o_{1:T})}{\displaystyle P(X_{t}\ |\ o_{1:T})}. This inference task is usually called smoothing. The algorithm makes use of the principle of dynamic programming to efficiently compute the values that are required to obtain the posterior marginal distributions in two passes. The first pass goes forward in time while the second goes backward in time; hence the name forward–backward algorithm.

The term forward–backward algorithm is also used to refer to any algorithm belonging to the general class of algorithms that operate on sequence models in a forward–backward manner. In this sense, the descriptions in the remainder of this article refer but to one specific instance of this class.


Source : Source : Wikipedia

Source : Wikipedia Machine learning algorithms

Source : UQAM

Source : Stanford

Contributeurs: Claire Gorjux, Imane Meziani, wiki