« Régression par moindre angle » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Least-angle regression ''' In statistics, least-angle regression (L... ») |
m (ClaireGorjux a déplacé la page Least-angle regression vers Régression par moindre angle) |
(Aucune différence)
|
Version du 19 mai 2021 à 12:26
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Least-angle regression
In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani.[1]
Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates. Then the LARS algorithm provides a means of producing an estimate of which variables to include, as well as their coefficients.
Instead of giving a vector result, the LARS solution consists of a curve denoting the solution for each value of the L1 norm of the parameter vector. The algorithm is similar to forward stepwise regression, but instead of including variables at each step, the estimated parameters are increased in a direction equiangular to each one's correlations with the residual.
Contributeurs: Claire Gorjux, Imane Meziani, wiki