« Matrice inversible » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==
Matrice carrée définie comme inversible si le produit de la matrice et de son inverse est la matrice d'identité. Une matrice d'identité est une matrice dont la diagonale principale est composée de tous les 1 et le reste des valeurs de la matrice sont des 0. Une matrice inversible est parfois qualifiée de non singulière ou de non dégénérée, et est généralement définie à l'aide de nombres réels ou complexes.
Matrice dont le déterminant est non nul. Il s’agit d’une matrice dont la particularité est de permettre l’existence d’un inverse.


== Français ==
== Français ==

Version du 20 mai 2021 à 09:27

Définition

Matrice dont le déterminant est non nul. Il s’agit d’une matrice dont la particularité est de permettre l’existence d’un inverse.

Français

matrice inversible

Anglais

invertible matrix


Source : DeepAI.org

Source : innastudio.com

Contributeurs: Claire Gorjux, Imane Meziani, wiki