« Lemme de Fatou » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 17 : | Ligne 17 : | ||
[[:Catégorie:Statistiques | © Glossaire de la statistique DataFranca]]<br> | [[:Catégorie:Statistiques | © Glossaire de la statistique DataFranca]]<br> | ||
[[Catégorie:Statistiques]] | [[Catégorie:Statistiques]] | ||
[[Catégorie: | [[Catégorie:GRAND LEXIQUE FRANÇAIS]] |
Version du 3 juin 2021 à 10:04
Définition
Le lemme de Fatou est un important résultat dans la théorie de l'intégration de Lebesgue. Il a été démontré par le mathématicien français Pierre Fatou (1878-1929). Ce lemme compare l'intégrale d'une limite inférieure de fonctions mesurables positives avec la limite inférieure de leurs intégrales.
Il est en général présenté dans une suite de trois résultats : d'abord le théorème de convergence monotone, qui sert ensuite à démontrer le lemme de Fatou, puis celui-ci est utilisé pour démontrer le théorème de convergence dominée.
Français
lemme de Fatou
Anglais
Fatou's lemma
Contributeurs: Claire Gorjux, wiki