« Word2vec » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
== Domaine == | == Domaine == | ||
[[ | [[Category:Vocabulary]] Vocabulary | ||
[[Catégorie:Apprentissage profond]] Apprentissage profond | [[Catégorie:Apprentissage profond]] Apprentissage profond | ||
Version du 26 février 2018 à 20:36
Domaine
Vocabulary Apprentissage profond
Définition
Termes privilégiés
Anglais
word2vec
word2vec is an algorithm and tool to learn word embeddings by trying to predict the context of words in a document. The resulting word vectors have some interesting properties, for example vector('queen') ~= vector('king') - vector('man') + vector('woman'). Two different objectives can be used to learn these embeddings: The Skip-Gram objective tries to predict a context from on a word, and the CBOW objective tries to predict a word from its context.
Contributeurs: Claude Coulombe, Imane Meziani, wiki