« AODE » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
== Définition == | == Définition == | ||
Consideré comme l’un des algorithmes representatifs les plus intéressants parmi les classifieurs bayésiens | Consideré comme l’un des algorithmes representatifs les plus intéressants parmi les classifieurs bayésiens | ||
Ligne 10 : | Ligne 8 : | ||
''' AODE''' | ''' AODE''' | ||
''' Averaged one-dependence estimators ''' | '''Averaged one-dependence estimators''' | ||
Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.[1] | Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.[1] |
Version du 9 février 2022 à 15:45
Définition
Consideré comme l’un des algorithmes representatifs les plus intéressants parmi les classifieurs bayésiens
Français
AODE
Anglais
AODE
Averaged one-dependence estimators
Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.[1]
Contributeurs: Claire Gorjux, Imane Meziani, wiki