« Apprentissage semi-supervisé » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
==Définition== | ==Définition== | ||
L’apprentissage semi-supervisé consiste à entraîner un modèle d’apprentissage sur un jeu de données partiellement annoté qui comporte quelques données annotées et beaucoup de données non annotées. L’idée est d’attribuer les annotations en utilisant la similarité entre les données annotées et les données non annotées. | |||
L’apprentissage semi-supervisé se situe ainsi entre l’apprentissage supervisé qui n’utilise que des données annotées et l’apprentissage non supervisé qui n’emploie que des [[Données non étiquetées|données non annotées]]. La combinaison de ces deux ensembles de données permet d’améliorer sensiblement les résultats sans avoir recours à l’intervention fastidieuse (coûteuse et chronophage) de l’annotation manuelle. | |||
==Compléments== | ==Compléments== | ||
Ligne 24 : | Ligne 24 : | ||
Source: Marc Lucea. ''Modélisation dynamique par réseaux de neurones et machines à vecteurs supports: contribution à la maîtrise des émissions polluantes de véhicules automobiles''.. domain_other. UniversitéPierre et Marie Curie - Paris VI, 2006. Français. <pastel-00001943> | Source: Marc Lucea. ''Modélisation dynamique par réseaux de neurones et machines à vecteurs supports: contribution à la maîtrise des émissions polluantes de véhicules automobiles''.. domain_other. UniversitéPierre et Marie Curie - Paris VI, 2006. Français. <pastel-00001943> | ||
* [https://fr.wikipedia.org/wiki/Apprentissage_semi-supervis%C3%A9 Source: Wikipédia, ''Apprentissage semi-supervisé''] | *[https://fr.wikipedia.org/wiki/Apprentissage_semi-supervis%C3%A9 Source: Wikipédia, ''Apprentissage semi-supervisé''] | ||
Source: Bisson, Valentin (2012). ''Algorithmes d’apprentissage pour la recommandation'', thèse de doctorat, Université de Montréal, 96 pages. | Source: Bisson, Valentin (2012). ''Algorithmes d’apprentissage pour la recommandation'', thèse de doctorat, Université de Montréal, 96 pages. | ||
Ligne 44 : | Ligne 44 : | ||
* [https://www.youtube.com/watch?v=OMRlnKupsXM Semi-Supervised Learning] --> | * [https://www.youtube.com/watch?v=OMRlnKupsXM Semi-Supervised Learning] --> | ||
<br></div><br><br> | <br></div><br><br> | ||
[[Catégorie:Termino 2019]] | [[Catégorie:Termino 2019]] | ||
[[Catégorie:GRAND LEXIQUE FRANÇAIS]] | [[Catégorie:GRAND LEXIQUE FRANÇAIS]] | ||
[[Catégorie:101]] | [[Catégorie:101]] |
Version du 21 août 2022 à 19:52
Définition
L’apprentissage semi-supervisé consiste à entraîner un modèle d’apprentissage sur un jeu de données partiellement annoté qui comporte quelques données annotées et beaucoup de données non annotées. L’idée est d’attribuer les annotations en utilisant la similarité entre les données annotées et les données non annotées.
L’apprentissage semi-supervisé se situe ainsi entre l’apprentissage supervisé qui n’utilise que des données annotées et l’apprentissage non supervisé qui n’emploie que des données non annotées. La combinaison de ces deux ensembles de données permet d’améliorer sensiblement les résultats sans avoir recours à l’intervention fastidieuse (coûteuse et chronophage) de l’annotation manuelle.
Compléments
Par exemple, un algorithme non-supervisé de groupement identifie des groupes, puis il attribue une étiquette à chacun des groupes pour ensuite étiqueter tous les membres de chacun de ces groupes.
Français
apprentissage semi-dirigé
apprentissage semi-supervisé
entraînement semi-supervisé
Anglais
semi-supervised learning
Source: Marc Lucea. Modélisation dynamique par réseaux de neurones et machines à vecteurs supports: contribution à la maîtrise des émissions polluantes de véhicules automobiles.. domain_other. UniversitéPierre et Marie Curie - Paris VI, 2006. Français. <pastel-00001943>
Source: Bisson, Valentin (2012). Algorithmes d’apprentissage pour la recommandation, thèse de doctorat, Université de Montréal, 96 pages.
Contributeurs: Claude Coulombe, Jacques Barolet, Julie Roy, Patrick Drouin, wiki