« Courbe de validation » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Validation Curve''' <small> [https://towardsdatascience.com/10-am... »)
 
Aucun résumé des modifications
Ligne 9 : Ligne 9 :
== Anglais ==
== Anglais ==
''' Validation Curve'''
''' Validation Curve'''
The validation curve plots the influence of a single hyperparameter on the train and validation set. By looking at the curve, we can determine the overfitting, underfitting and just-right conditions of the model for the specified values of the given hyperparameter. When there are multiple hyperparameters to tune at once, the validation curve cannot be used. Instated, you can use grid search or random search.


<small>
<small>
Ligne 14 : Ligne 16 :


[https://towardsdatascience.com/10-amazing-machine-learning-visualizations-you-should-know-in-2023-528282940582  Source : towardsdatascience ]
[https://towardsdatascience.com/10-amazing-machine-learning-visualizations-you-should-know-in-2023-528282940582  Source : towardsdatascience ]




[[Catégorie:vocabulary]]
[[Catégorie:vocabulary]]

Version du 7 novembre 2022 à 08:46

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Validation Curve

The validation curve plots the influence of a single hyperparameter on the train and validation set. By looking at the curve, we can determine the overfitting, underfitting and just-right conditions of the model for the specified values of the given hyperparameter. When there are multiple hyperparameters to tune at once, the validation curve cannot be used. Instated, you can use grid search or random search.


Source : towardsdatascience

Contributeurs: Amanda Clément, wiki