« Théorème de Kantorovich » : différence entre les versions
m (Remplacement de texte — « © Glossaire » par « Glossaire ») |
m (Remplacement de texte : « Glossaire de la statistique DataFranca » par « {{Modèle:Statistiques}} ») |
||
Ligne 19 : | Ligne 19 : | ||
[https://en.wikipedia.org/wiki/Kantorovich_theorem#:~:text=The%20Kantorovich%20theorem%2C%20or%20Newton%E2%80%93Kantorovich%20theorem%2C%20is%20a,of%20a%20zero%20rather%20than%20a%20fixed%20point. Source : Wikipédia ] | [https://en.wikipedia.org/wiki/Kantorovich_theorem#:~:text=The%20Kantorovich%20theorem%2C%20or%20Newton%E2%80%93Kantorovich%20theorem%2C%20is%20a,of%20a%20zero%20rather%20than%20a%20fixed%20point. Source : Wikipédia ] | ||
{{Modèle:Statistiques}}<br> | |||
[[Catégorie:Statistiques]] | [[Catégorie:Statistiques]] | ||
[[Catégorie:ISI]] | [[Catégorie:ISI]] |
Version du 4 janvier 2024 à 22:37
Définition
Le théorème de Kantorovich, ou théorème de Newton-Kantorovich, est un énoncé mathématique sur la convergence semi-locale de la méthode de Newton. Il a été énoncé pour la première fois par Leonid Kantorovich en 1948. Il est similaire à la forme du théorème du point fixe de Banach, bien qu'il énonce l'existence et l'unicité d'un zéro plutôt que d'un point fixe.
Français
théorème de Kantorovitch
théorème de Newton-Kantorovich
Anglais
Kantorovitch's theorem
Newton–Kantorovich theorem
Contributeurs: Claire Gorjux, wiki