« Hyper-heuristique » : différence entre les versions
m (Remplacement de texte — « Termes privilégiés » par « Français ») |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 16 : | Ligne 16 : | ||
== Anglais == | == Anglais == | ||
''' Hyper-heuristic ''' | |||
A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.[1][2][3] | A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.[1][2][3] | ||
Version du 28 avril 2019 à 10:58
Domaine
Définition
Français
Anglais
Hyper-heuristic
A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.[1][2][3]
There might be multiple heuristics from which one can choose for solving a problem, and each heuristic has its own strength and weakness. The idea is to automatically devise algorithms by combining the strength and compensating for the weakness of known heuristics.[4] In a typical hyper-heuristic framework there is a high-level methodology and a set of low-level heuristics (either constructive or perturbative heuristics). Given a problem instance, the high-level method selects which low-level heuristic should be applied at any given time, depending upon the current problem state, or search stage.[2]
Contributeurs: Imane Meziani, wiki, Sihem Kouache