Apprentissage du classement
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Learning to rank
Learning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems.[2] Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item. The ranking model purposes to rank, i.e. producing a permutation of items in new, unseen lists in a similar way to rankings in the training data.
Contributeurs: Amanda Clément, wiki