Bootstrap aggregating


Révision datée du 27 janvier 2024 à 19:27 par Pitpitt (discussion | contributions) (Remplacement de texte : « ↵↵<small> » par «  ==Sources==  »)

Page de redirection


en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Bootstrap aggregating

Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach.


Sources

[XXXXXXXXXX Source : Source : Wikipedia ]

Source : Wikipedia Machine learning algorithms

Contributeurs: wiki