Apprentissage par renforcement
Domaine
intelligence artificielle
GDT
GRAND LEXIQUE FRANÇAIS
Définition
L’apprentissage par renforcement, pour Reinforcement Learning (RL) fait référence à une classe de problèmes d’apprentissage automatique, dont le but est d’apprendre, à partir d’expériences successives, ce qu’il convient de faire de façon à trouver la meilleure solution.
Dans un tel apprentissage, on dit qu’un « agent », l’algorithme, interagit avec « l’environnement » pour trouver la solution optimale. L’apprentissage par renforcement diffère fondamentalement de l'apprentissage supervisé et de l'apprentissage non supervisé par ce côté interactif et itératif: l’agent essaie plusieurs solutions, on parle « d’exploration », observe la réaction de l’environnement et adapte son comportement (les variables) pour trouver la meilleure stratégie. On dira qu'il « exploite » le résultat de ses explorations.
Voir apprentissage par renforcement inverse.
Français
apprentissage par renforcement n. m. ===
Anglais
reinforcement learning
-->
Source: Wikipedia
Contributeurs: Claude Coulombe, Jacques Barolet, wiki, Robert Meloche