Extinction de neurone
Domaine
[Category:Vocabulary]]
Intelligence artificielle
Apprentissage automatique
Apprentissage profond
Coulombe
Définition
Méthode de régularisation de l'apprentissage d'un réseau profond par extinction de neurones (dropout). Rappelons que la régularisation consiste en l'ajout de contraintes pour réduire le surajustement (overfitting).
Français
<poll>
Choisissez parmi ces termes proposés :
extinction de neurone
maille de réseau
point mort
trou de neurone
trou de mémoire
trou de réseau
</poll>
Anglais
Dropout
Dropout is a regularization technique for Neural Networks that prevents overfitting. It prevents neurons from co-adapting by randomly setting a fraction of them to 0 at each training iteration. Dropout can be interpreted in various ways, such as randomly sampling from an exponential number of different networks. Dropout layers first gained popularity through their use in CNNs, but have since been applied to other layers, including input embeddings or recurrent networks.
- Dropout: A Simple Way to Prevent Neural Networks from Overfitting
- Recurrent Neural Network Regularization
Contributeurs: Claude Coulombe, Jacques Barolet, Julie Roy, Patrick Drouin, wiki