Algorithme T-SNE


Définition

L'algorithme t-SNE (t-distributed stochastic neighbor embedding) est une méthode de réduction de dimensions, similaire à UMAP pour la visualisation d'un ensemble de points d'un espace à grande dimension dans un espace à deux ou trois dimensions.

Compléments

Les données traitées par t-SNE peuvent être visualisées sous la forme des nuages de points. L'algorithme non linéaire t-SNE utilise des techniques d'optimisation basées sur la théorie de l'information afin de conserver la distance relative entre les points pendant la réduction de dimensions. Ainsi, deux points qui sont proches (ou éloignés) dans l'espace d'origine doivent être proches (ou éloignés) dans l'espace de faible dimension. L'algorithme t-SNE se base sur une interprétation probabiliste des distances.

L'algorithme t-SNE a été développé en 2018 par Geoffrey Hinton et Laurens van der Maaten.

L'algorithme t-SNE a été utilisée pour de nombreuses applications : traitement automatique de la langue (similarité sémantique entre les mots), analyse de la musique, recherches médicales, bioinformatique, et le traitement de signaux. Cette méthode est souvent utilisée pour la visualisation de représentations de haut-niveau apprises par un réseau de neurones artificiel.


Français

t-SNE

algorithme t-SNE

méthode t-SNE

Anglais

t-SNE

t-distributed stochastic neighbor embedding


Source : Wikipedia t-SNE