Distribution delta
Définition
La distribution de Dirac peut être informellement considérée comme une fonction qui prend une « valeur » infinie en 0, et la valeur zéro partout ailleurs, et dont l'intégrale sur ℝ est égale à 1. La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives.
D'autre part, δ est égale à la dérivée (au sens des distributions) de la fonction de Heaviside. Cette « fonction » δ de Dirac n'est pas une fonction mais c'est une mesure de Borel, donc une distribution.
Français
distribution delta
Anglais
delta distribution
Dirac delta function
Sources
[# term907.htm Source : ISI ]
Contributeurs: Claire Gorjux, wiki