Architecture de réseau de neurones
Définition
L'architecture d'un réseau de neurones est l'organisation des neurones en couches et en liens d'interconnexion.
Il existe plusieurs architectures typiques de réseau de neurones: perceptron multicouche, réseau autoattentif, réseau convolutif, réseau d'espaces d'états structurés, réseau récurrent, etc.
Compléments
L’architecture des réseaux de neurones est un sujet de recherche très actif et beaucoup d'articles de recherche font état de la création de nouvelles architectures ou d’améliorations à des architectures existantes. La mise au point de nouvelles architectures de réseaux de neurones est devenu un paradigme important de la recherche actuelle en IA.
Avec l’apprentissage profond, l'ingénierie des architectures de réseaux de neurones a remplacé l'ingénierie des attributs. Cela représente une approche totalement nouvelle par rapport à l’ingénierie des attributs, car il faut mettre beaucoup d’effort du côté de la conception des architectures ou des modèles sous-jacent.
La capacité d'apprentissage d'un réseau de neurones réside davantage son organisation en réseau, c'est-à-dire son architecture, que dans la capacité de calcul des neurones individuels qui reste étonnamment simple.
Français
Architecture de réseau de neurones
Anglais
Neural network architecture
Contributeurs: Claude Coulombe, Jacques Barolet, wiki