Erreur entropie croisée catégorielle
Domaine
Vocabulary Apprentissage profond
Définition
Français
Anglais
Categorical Cross-Entropy Loss
The categorical cross-entropy loss is also known as the negative log likelihood. It is a popular loss function for categorization problems and measures the similarity between two probability distributions, typically the true labels and the predicted labels. It is given by L = -sum(y * log(y_prediction)) where y is the probability distribution of true labels (typically a one-hot vector) and y_prediction is the probability distribution of the predicted labels, often coming from a softmax.
Contributeurs: Imane Meziani, wiki