Sous-échantillonnage aléatoire


Définition

Une approche pour résoudre le problème du déséquilibre de classe consiste à rééchantillonner au hasard l'ensemble de données d'apprentissage. Les deux principales approches pour rééchantillonner au hasard un ensemble de données déséquilibré consistent à supprimer des exemples de la classe majoritaire, appelés sous-échantillonnage, et à dupliquer des exemples de la classe minoritaire, appelés suréchantillonnage.

Français

Sous-échantillonnage aléatoire masculin

Sur-échantillonnage aléatoire masculin

Anglais

Random Under-Sampling

Random Over-Sampling


Source : machine learning mastery

Contributeurs: Imane Meziani, wiki, Sihem Kouache