Modèle linéaire généralisé


Révision datée du 23 mars 2018 à 19:50 par Pitpitt (discussion | contributions) (Page créée avec « __NOTOC__ == Domaine == Category:VocabulaireVocabulaire<br /> Category:GoogleGoogle<br /> Category:Apprentissage profondApprentissage profond<br /> <br /> ==... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

Domaine

Vocabulaire
Google
Apprentissage profond


Définition

Généralisation des modèles de régression des moindres carrés, qui sont basés sur le bruit gaussien, à d'autres types de modèles basés sur d'autres types de bruit, par exemple le bruit de grenaille ou le bruit catégorique. Exemples de modèles linéaires généralisés :

  • Régression logistique
  • Régression à classes multiples
  • Régression des moindres carrés

Les paramètres d'un modèle linéaire généralisé peuvent être déterminés via une optimisation convexe.

Les modèles linéaires généralisés présentent les propriétés suivantes :

  • La prédiction moyenne du modèle de régression des moindres carrés optimal est égale à l'étiquette moyenne des données d'apprentissage.
  • La probabilité moyenne prédite par le modèle de régression logistique optimal est égale à l'étiquette moyenne des données d'apprentissage.

La puissance d'un modèle linéaire généralisé est limitée par les caractéristiques de celui-ci. Contrairement à un modèle profond, un modèle généralisé ne peut pas "apprendre de nouvelles caractéristiques".



Termes privilégiés

modèle linéaire généralisé


Anglais

generalized linear model




Source: Google machine learning glossary