Factorisation matricielle non négative


Révision datée du 17 décembre 2020 à 11:43 par Pitpitt (discussion | contributions) (Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Non-negative matrix factorization''' Non-negative matrix factorizat... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Non-negative matrix factorization

Non-negative matrix factorization (NMF or NNMF), also non-negative matrix approximation[1][2] is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered. Since the problem is not exactly solvable in general, it is commonly approximated numerically.

NMF finds applications in such fields as astronomy,[3][4] computer vision, document clustering,[1] missing data imputation,[5] chemometrics, audio signal processing, recommender systems,[6][7] and bioinformatics.[8]

Source : Wikipedia Machine Learning