Séparateur à vaste marge à noyau


Révision datée du 8 mars 2019 à 05:47 par Gdpelletier (discussion | contributions) (Page créée avec « The kernel support vector machine is essentially the same as the standard SVM, with a cool trick that allows it to discover non-linear decision boundaries. Instead of us... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

The kernel support vector machine is essentially the same as the standard SVM, with a cool trick that allows it to discover non-linear decision boundaries.

Instead of using the data as-is, we throw our data into something called a kernel. The kernel is any function that takes an input with a given dimensionality and returns an output with higher dimensionality, effectively adding more features to your examples.