Méthode à noyau


Révision datée du 31 décembre 2018 à 14:45 par Pitpitt (discussion | contributions) (Remplacement de texte — « Termes privilégiés » par « Français »)

Domaine

Définition

Français

Anglais

Kernel method

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best known member is the support vector machine (SVM). The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over pairs of data points in raw representation.