Apprentissage par renforcement à base de modèles
Définition
L'apprentissage par renforcement basé sur un modèle ne diffère de son homologue sans modèle que par l'apprentissage d'un modèle de dynamique, mais cela a des effets substantiels en aval sur la manière dont les décisions sont prises.
En apprentissage par renforcement, l’algorithme apprend un comportement à partir d’expériences répétées, de façon à optimiser les récompenses reçues au cours du temps. Tout comme l’apprentissage non supervisé, l’apprentissage par renforcement n’a pas besoin de données étiquetées.
Typiquement, un agent intelligent, qui est plongé au sein d’un environnement, prend une décision ou réalise une action en fonction de son état courant et de l’observation de son environnement. En retour de l’action de l’agent, l’environnement procure à l’agent une récompense ou une punition.
On peut voir l’apprentissage par renforcement comme un jeu d’essais et d’erreurs dont le but est de déterminer les actions qui vont maximiser les gains d’un agent intelligent. Il élaborera ainsi un comportement optimal, appelé stratégie ou politique, qui est une fonction associant à l’état courant l’action à exécuter.
Voir aussi:
- apprentissage par fonction Q
- apprentissage avec politique d'action.
- apprentissage par renforcement inverse
Compléments
Français
apprentissage par renforcement à base de modèles
Anglais
Model Based Reinforcement Learning
MBRL
Sources
Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT)
arxiv - Model-based Reinforcement Learning: A Survey - T M. Moerland & al.
Model Based Reinforcement Learning (MBRL) - Hugginface FRANÇAIS]]
Contributeurs: Claude Coulombe, Patrick Drouin, wiki