Extinction de neurone


Révision datée du 2 mai 2018 à 11:17 par Claude COULOMBE (discussion | contributions) (mécanisme de vote)

Domaine

Vocabulary
Claude
Apprentissage profond

Définition

injection de bruit pour rendre le réseau plus robuste, équivalent

Termes privilégiés

<poll> Choisissez parmi ces termes proposés : défaut de réseau maille de réseau neurone éteint point mort trou de mémoire trou de neurone trou de réseau </poll>



Anglais

Dropout

Dropout is a regularization technique for Neural Networks that prevents overfitting. It prevents neurons from co-adapting by randomly setting a fraction of them to 0 at each training iteration. Dropout can be interpreted in various ways, such as randomly sampling from an exponential number of different networks. Dropout layers first gained popularity through their use in CNNs, but have since been applied to other layers, including input embeddings or recurrent networks.

  • Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  • Recurrent Neural Network Regularization