Distribution de Dirac
en construction
Définition
En mathématiques, la fonction delta de Dirac (fonction δ) est une fonction ou distribution généralisée introduite par le physicien Paul Dirac. Elle est utilisée pour modéliser la densité d'une masse ponctuelle ou charge ponctuelle idéalisée en fonction de zéro partout sauf pour zéro et dont l'intégrale sur toute la ligne réelle est égale à un.
La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives. D'autre part, δ est égale à la dérivée (au sens des distributions) de la fonction de Heaviside. Cette « fonction » δ de Dirac n'est pas une fonction mais c'est une mesure de Borel, donc une distribution.
La distribution de Dirac, aussi appelée par abus de langage fonction δ de Dirac, introduite par Paul Dirac, peut être informellement considérée comme une fonction qui prend une « valeur » infinie en 0, et la valeur zéro partout ailleurs, et dont l'intégrale sur ℝ est égale à 1. La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives. D'autre part, δ est égale à la dérivée (au sens des distributions) de la fonction de Heaviside. Cette « fonction » δ de Dirac n'est pas une fonction mais c'est une mesure de Borel, donc une distribution.
Français
distribution de Dirac loc. nom. fém.
fonction delta de Direc loc. nom. fém.
Anglais
Dirac delta function
Contributeurs: Evan Brach, Claire Gorjux, Jacques Barolet, wiki