Characteristic Functions


Révision datée du 15 décembre 2020 à 18:08 par Pitpitt (discussion | contributions) (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org  »)

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Characteristic Functions Characteristic functions are an alternative method to simplify probability function distributions instead of calculating the density functions directly. When a random variable has any probability density function, then the “characteristic function” is simply the Fourier transform of the that probability density function.

This is particularly useful when working with cumulative distribution functions, since this approach generates simple results for the characteristic functions of distributions, defined by the weighted sums of the random variables.

Characteristic functions can also be defined by vector or matrix-valued random variables, and not just univariate distributions.



Source : DeepAI.org

Contributeurs: Jean Benoît Morel, wiki