Statistiques de discordance


Révision datée du 15 décembre 2020 à 18:09 par Pitpitt (discussion | contributions) (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org  »)

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Discrepancy Statistics Discrepancy statistics quantitatively describe how closely a deep learning model conforms to real world observed data. These are usually expressed with some form of discrepancy function, where larger values show a poor fit of the model to data and zero indicating a perfect fit. In most cases, a given model’s parameter estimates are designed to ensure the lowest discrepancy function score as possible for the model.

In algebraic terms, these are continuous functions of the S elements, the sample covariance matrix, and reproduced estimate of S ( Σ(θ) ) calculated from the parameter estimates and the structural model.



Source : DeepAI.org

Contributeurs: Marie Alfaro, wiki