Arbre de modèle logistique


Révision datée du 17 décembre 2020 à 11:55 par Pitpitt (discussion | contributions) (Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Logistic model tree''' In computer science, a logistic model tree (L... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Logistic model tree In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning.[1][2]

Logistic model trees are based on the earlier idea of a model tree: a decision tree that has linear regression models at its leaves to provide a piecewise linear regression model (where ordinary decision trees with constants at their leaves would produce a piecewise constant model).[1] In the logistic variant, the LogitBoost algorithm is used to produce an LR model at every node in the tree; the node is then split using the C4.5 criterion. Each LogitBoost invocation is warm-started[vague] from its results in the parent node. Finally, the tree is pruned.[3]

The basic LMT induction algorithm uses cross-validation to find a number of LogitBoost iterations that does not overfit the training data. A faster version has been proposed that uses the Akaike information criterion to control LogitBoost stopping.[3]

Source : Wikipedia Machine Learning

Contributeurs: Claire Gorjux, wiki