Erreur Out Of Bag


Révision datée du 18 décembre 2020 à 17:07 par Pitpitt (discussion | contributions) (Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Out-of-bag error''' Out-of-bag (OOB) error, also called out-of-bag... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Out-of-bag error


Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of measuring the prediction error of random forests, boosted decision trees, and other machine learning models utilizing bootstrap aggregating (bagging). Bagging uses subsampling with replacement to create training samples for the model to learn from. OOB error is the mean prediction error on each training sample xᵢ, using only the trees that did not have xᵢ in their bootstrap sample.[1]

Bootstrap aggregating allows one to define an out-of-bag estimate of the prediction performance improvement by evaluating predictions on those observations which were not used in the building of the next base learner.


Source : Source : Wikipedia

Source : Wikipedia Machine learning algorithms

Contributeurs: Claire Gorjux, wiki