Rprop


Révision datée du 18 décembre 2020 à 17:13 par Pitpitt (discussion | contributions) (Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Rprop''' Rprop, short for resilient backpropagation, is a learning... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Rprop

Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992.[1]

Similarly to the Manhattan update rule, Rprop takes into account only the sign of the partial derivative over all patterns (not the magnitude), and acts independently on each "weight". For each weight, if there was a sign change of the partial derivative of the total error function compared to the last iteration, the update value for that weight is multiplied by a factor η−, where η− < 1. If the last iteration produced the same sign, the update value is multiplied by a factor of η+, where η+ > 1. The update values are calculated for each weight in the above manner, and finally each weight is changed by its own update value, in the opposite direction of that weight's partial derivative, so as to minimise the total error function. η+ is empirically set to 1.2 and η− to 0.5.


Source : Source : Wikipedia

Source : Wikipedia Machine learning algorithms

Contributeurs: Imane Meziani, wiki