Ecrêtage de gradient


Révision datée du 26 février 2018 à 19:32 par Pitpitt (discussion | contributions) (Page créée avec « == Domaine == catégorie:Démo Catégorie Démo Catégorie:Apprentissage profond Apprentissage profond == Définition == == Termes privilégiés ==... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

Domaine

Catégorie Démo Apprentissage profond

Définition

Termes privilégiés

Anglais

Gradient Clipping

Gradient Clipping is a technique to prevent exploding gradients in very deep networks, typically Recurrent Neural Networks. There exist various ways to perform gradient clipping, but the a common one is to normalize the gradients of a parameter vector when its L2 norm exceeds a certain threshold according to new_gradients = gradients * threshold / l2_norm(gradients). • On the difficulty of training recurrent neural networks