Word2vec


Révision datée du 26 février 2018 à 19:47 par Pitpitt (discussion | contributions) (Page créée avec « == Domaine == catégorie:Démo Catégorie Démo Catégorie:Apprentissage profond Apprentissage profond == Définition == == Termes privilégiés ==... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

Domaine

Catégorie Démo Apprentissage profond

Définition

Termes privilégiés

Anglais

word2vec

word2vec is an algorithm and tool to learn word embeddings by trying to predict the context of words in a document. The resulting word vectors have some interesting properties, for example vector('queen') ~= vector('king') - vector('man') + vector('woman'). Two different objectives can be used to learn these embeddings: The Skip-Gram objective tries to predict a context from on a word, and the CBOW objective tries to predict a word from its context.