Qualité de l'ajustement
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Goodness of Fit
With regard to a machine learning algorithm, a good fit is when the error for the model on the training data as well as the test data is minimum. Over time, as the algorithm learns, the error for the model on the training data goes down and so does the error on the test dataset. If we train for too long, the performance on the training dataset may continue to decrease because the model is overfitting and learning the irrelevant detail and noise in the training dataset. At the same time the error for the test set starts to rise again as the model’s ability to generalize decreases.
So the point just before the error on the test dataset starts to increase where the model has good skill on both the training dataset and the unseen test dataset is known as the good fit of the model.
Contributeurs: Imane Meziani, wiki