Réseau neuronal de graphes récurrent


Révision datée du 28 juin 2022 à 09:53 par Pitpitt (discussion | contributions) (Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Graph Recurrent Neural Networks''' Recurrent neural networks (RNN... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Graph Recurrent Neural Networks

Recurrent neural networks (RNNs) are one of the most popular architectures in modern deep learning. In GNN theory, the equivalent to RNNs is represented by an architecture known as graph recurrent neural networks (GRNNs). As its name indicates, the core idea of GRNN is to generalize RNN principles used for sequential data processing to process graph data. Just like RNNs learn dependencies over sequential datasets, GRNNs can do something similar for graph-structured data. This problem can be particularly complicated in graphs as nodes can have an arbitrary number of relationships.  

Source : substack

Contributeurs: Patrick Drouin, wiki