Extraction de connaissances


Révision datée du 28 février 2018 à 22:04 par Pitpitt (discussion | contributions) (Page créée avec « == Domaine == Category:Vocabulary == Définition == == Termes privilégiés == == Anglais == === Knowledge extraction === Knowledge extraction is the... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

Domaine

Définition

Termes privilégiés

Anglais

Knowledge extraction

Knowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL (data warehouse), the main criteria is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema. It requires either the reuse of existing formal knowledge (reusing identifiers or ontologies) or the generation of a schema based on the source data.

The RDB2RDF W3C group [1] is currently standardizing a language for extraction of RDF from relational databases. Another popular example for knowledge extraction is the transformation of Wikipedia into structured data and also the mapping to existing knowledge (see DBpedia and Freebase).