Surapprentissage


Révision datée du 28 janvier 2024 à 12:59 par Pitpitt (discussion | contributions) (Remplacement de texte : « ↵<small> » par «  ==Sources== »)

Définition

Le surapprentissage ou surajustement (overfitting ) est un problème pouvant survenir dans les méthodes mathématiques de classification pour les réseaux de neurones. Il est en général provoqué par un mauvais dimensionnement de la structure utilisée pour classifier. De par sa trop grande capacité à stocker des informations, une structure dans une situation de surapprentissage aura de la peine à généraliser les caractéristiques des données. Elle se comporte alors comme une table contenant tous les échantillons utilisés lors de l'apprentissage et perd ses pouvoirs de prédiction sur de nouveaux échantillons.

Voir: fléau de la dimension.

Français

surapprentissage

surajustement

surinterprétation

Anglais

overfitting

overlearning

overtraining


Sources

Source : TERMIUM Plus

Source: Google, Machine learning glossary

Source: Wikipedia, Surapprentissage.