Principe d'entropie maximale


Révision datée du 30 avril 2019 à 20:16 par Pitpitt (discussion | contributions) (Page créée avec « == Domaine == category:Vocabulaire Catégorie:Wikipedia-IA Catégorie:Intelligence artificielle Catégorie:Apprentissage automatique [[Catégorie:scotty]... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

Domaine


Définition

Le principe d'entropie maximale consiste, lorsqu'on veut représenter une connaissance imparfaite d'un phénomène par une loi de probabilité, à :

  • identifier les contraintes auxquelles cette distribution doit répondre (moyenne, etc) ;
  • choisir de toutes les distributions répondant à ces contraintes celle ayant la plus grande entropie au sens de Shannon.

Ce choix n'a rien d'arbitraire : de toutes ces distributions, c'est - par définition de l'entropie - celle d'entropie maximale qui contient le moins d'information, et elle est donc pour cette raison la moins arbitraire de toutes celles que l'on pourrait utiliser.

La distribution de probabilité obtenue sert ensuite de probabilité a priori dans un processus classique d'inférence bayésienne.


Français

Principe d'entropie maximale



Anglais

XXXXXXXXXXXXXXX



Source : Wikipedia IA

Contributeurs: Jacques Barolet, wiki